coli ML35 cells and the transport of O-nitrophenyl-D-β-pyranoside-galactoside the repaired membrane Vaidhyanathan, V. S. and Seshadri, M. S. (211) 1

Reaction rate profiles in membrane systems

Vanatta, J. C., see Drane (211) 56

Vanatta, J. C., see Kallus, F. T. (211) 61

Van Deenen, L. L. M., see De Gier, J. (211)

Van Steveninck, J., see De Bruijne, A. W. (211)

Vaz Dias, H., see Emmelot, P. (211) 43 Vinten, J. see Clausen, T. (211) 233

Wang, C.-T., see Nobel, P. S. (211) 79

Weinstein, S., see Gil-Av, E. (211) 101 Weiss, I. W., see Phang, J. M. (211) 605

Weller, R. S., see Jackson, M. J. (211) 425 Whittembury, G., see Proverbio, F. (211) 327

SUBJECT INDEX

N-Acetyl-D-galactosamine

Specific inhibition by ———— of the interaction between soybean agglutinin and animal cell surfaces (Lis et al.) (211) 582

Active sugar transport

 in renal cortex cells: The electrolyte requirement (Kleinzeller) (211) 277

Adenyl cyclase

Hormone action at the membrane level. 1. Properties of — in isolated plasma membranes of rat liver (Ray et al.) (211)

Agglutinin

Speicfic inhibition by N-acetyl-D-galactosamine of the interaction between soybean --- and animal cell surfaces (Lis et al.) (211) 582

Amino acid permeability

 of pea chloroplasts as measured by osmotically determined reflection coefficients (Nobel, Wang) (211) 79

Amino acid transport

- by isolated mammalian renal tubules. III. Binding of L-proline by proximal tubule membranes (Hillman, Rosenberg) (211) 318

Amino acid transport

---- in Neurospora crassa. III. Acidic amino acid transport (Pall) (211) 513

Amino acid uptake

Cyclic AMP stimulation of ——— in bone and kidney (Phang et al.) (211) 605

Effect of -- (chlorpromazine, ethanol) on erythrocyte permeability to water (Seeman et al.) (211) 365

Anaesthetics

Phospholipid model membranes: Antagonistic effects of Ca2+ and local -the permeability of phosphatidylserine vesicles (Papahadjopoulos) (211) 467

Anion permeability

-- of mammalian red blood cells: Possible relation to membrane phospholipid patterns (Deuticke, Gruber) (211) 369

ATPase

 Mg^{2+} -dependent, $(Na^+ + K^+)$ -stimulated

- of human platelets. Properties and inhibition by ADP (Moake et al.) (211) 337 **ATPase**

Studies on plasma membranes. XII. Fractionation of the ---- of deoxycholatesolubilized rat liver and hepatoma plasma membranes and the morphological appearance of the preparations (Emmelot et al.) (211)43

Bilayers

Valinomycin-induced permeation of *6Rb+ of liposomes with varying composition through the -— (De Gier et al.) (211) 373

Bilayer membranes

Ionic permeative properties of lipid ——— (Simons, Taloni) (211) 448

Bilayer membranes

Kinetics of carrier-mediated ion transport across lipid ---- (Läuger, Stark) (211) 458

Effect of ———— on transport across brush border of rabbit ileum (Frizzell, Schultz) (211) 589

Biogenic amine transport

 and storage. IV. Mechanisms of ---Relationship between K+ and the Na⁺ requirement for transport and storage of 5-hydroxytryptamine and norepinephrine in synaptosomes (Bogdanski et al.) (211) 521

Bladder

Comparison of rates elution of ²⁴Na⁺ from the mucosal and serosal sides of the toad - (Drane, Vanatta) (211) 56

Bladder

Compartmentation and exchange of potassium in the toad ——— (Kallus, Vanatta) (211) 61

Bladder

Temperature dependence of Na+ transport in the isolated toad ——— (Porter) (211) 487

Bladder mucosal cells

p-Nitrophenylphosphatase activity in the microsomal fraction of turtle -(Shamoo et al.) (211) 565

Brush border

Effect of bile salts on transport across

——— of rabbit ileum (Frizzell, Schultz)	through membranes of aqueous cobaltodi-
(211) 589	histidine (Bassett, Schultz) (211) 194
Brush border	Dimethyl sulphoxide
Fructose influx across the ——— of rabbit	Asymmetry of the yeast cell membrane
ileum (Schultz, Strecker) (211) 586	with respect to influx and efflux of —
Carbohydrates	(De Bruijne, Van Steveninck) (211) 555
Relative permability of lysosomes from	Dimethyl sulphoxide
Tetrahymena pyriformis to ———, lactate	Relative permeability of lysosomes from
and the cryoprotective nonelectrolytes	Tetrahymena pyriformis to carbohydrates,
glycerol and dimethyl sulphoxide (Lee) (211)	lactate and the cryoprotective nonelectro-
550	lytes glycerol and ——— (Lee) (211) 550
Cell communication	Efflux
Epithelial monolayers: A study object for	Asymmetry of the yeast cell membrane
(Siegenbeek van Heukelom et al.)	with respect to influx and of di-
(211) 98	methylsulphoxide (D. Bruijne, Van Steve-
Cetyltrimethylammonium bromide	ninck) (211) 555
Transport of β -galactosides across the	Electrical potential
membrane of permeaseless Escherichia	Alanine and glucose effects on the intra-
coli ML35 cells after treatment with ———	cellular —— of rabbit ileum (Rose,
(Ulitzur) (211) 533	Schultz) (211) 376
Chloride pumping	Electrolyte
Ion and water transport in Limonium. VI.	Active sugar transport in renal cortex cells:
The induction of (Shachar-Hill,	The requirement (Kleinzeller) (211)
Hill) (211) 313	277
Chlorophyll membranes	Electron micrographs
Fluorescene of thin ——— in aqueous phase	Structure of lysolecithin-water phases
(Alamuti, Läuger) (211) 362	(negative staining and optical diffraction
Chloroplasts	analysis of the —————————) (Junger et al.) (211)
Amino acid permeability of pea ——— as	381
measured by osmotically determined reflec-	Elution
tion coefficients (Nobel, Wang) (211) 79	Comparison of rates of ——— of ²⁴ Na ⁻
Chlorpromazine,	from the mucosal and serosal sides of the
Effect of anaesthetics (———, ethanol) on	toad bladder (Drane, Vanatta) (211) 56
erythrocyte permeability to water (Seeman	Endoplasmic reticulum
et al.) (211) 365	Isolation and characterization of a mem-
Cholesterol monolayers	brane protein component from rat liver
Effect of KMnO ₄ on lecithin and ———	(Kaplan) (211) 396
(Shah) (211) 358	Epinephrine
Cobaltodihistidine	Hormone action at the membrane level. II.
Nonequilibrium-facilitated diffusion of	The binding of ——— and glucagon to the
oxygen through membranes of aqueous	rat liver plasma membrane (Tomasi et al.)
	(211) 31
Compartmentation (Bassett, Schultz) (211) 194	Epithelial monolayers
and exchange of potassium in the	: A study object for cell communi-
toad bladder (Kallus, Vanatta) (211) 61	cation (Siegenbeek van Heukelom et al.)
Configuration of alanine	(211) 98 Environment
Gas chromatography determination of the	Erythrocytes Facilitated diffusion in human ———
and serine in staphylococcal cell	
walls (Gil-Av et al.) (211) 101	(Hunter) (112) 216
Configuration of serine	Erythrocyte membrane proteins
Gas chromatography determination of the	
and alanine in staphylococcal cell	solutions (Blumenfeld et al.) (211) 109
walls (Gil-Av et al.) (211) 101	Ethacrynic acid
Cyclic AMP stimulation	Sensitivities of (Na+-K+)-ATPase and Na+
of amino acid uptake in bone and	extrusion mechanisms to ouabain and ———
kidney (Phang et al. (211) 605	in the cortex of the guinea-pig kidney
Deoxycytidine transport	(Proverbio et al.) (211) 327
Effects of persantin on by murine	Ethanol
leukemia cells (Kessel, Hall) (211) 88	Effect of anaesthetics (chlorpromazine,
Diffusion Facilitated in human authrocutes	water (Seeman et al.) (211) 365
Facilitated —— in human eythrocytes	
(Hunter) (211) 216 Diffusion	Exchange of potassium Compartmentation and ——————————————————————————————————
Nonequilibrium-facilitated ——— of oxygen	bladder (Kallus, Vanatta) (211) 61
2. onequinorum-raemtated or oxygen	Diaduci (Isanus, vanatta) (211) 01

lytes ——— and dimethyl sulphoxide (Lee) Extracellular space Studies on intestinal fluid transport. 1. (211) 550 Estimation of the ---- of everted sacs Glycoproteins of rat small intestine (Jackson et al.) (211) ——— of mouse liver smooth microsomal and plasma membrane fractions (Evans) 425 (211) 578 Facilitated diffusion Golgi-rich fraction --- in human erythrocytes (Hunter) (211) 216Isolation of a — from rat liver Facilitated diffusion (Leelavathi et al.) (211) 124 Nonequilibrium ———— of oxygen through Hormone action membranes of aqueous cobaltodihistidine (Bassett, Schultz) (211) 194 of adenyl cyclase in isolated plasma mem-P-Filament branes of rat liver (Ray et al.) (211) 20 Solubilization of the factor required for Hormone action polymerization of flagellin into ---- - at the membrane level. II. The binding of epinephrine and glucagon to the (Kagawa) (211) 417 Flagellin rat liver plasma membrane (Tomasi et al.) Solubilization of the factor required for (211) 31polymerization of —— – into P-filament Hydrocarbon chains Influence of pH and temperature on the (Kagawa) (211) 417 limited rotational freedom of the struc-Fluorescene - - of thin chlorophyll membranes in tured water and lipid ----- of natural membranes (Cerbón) (211) 389 aqueous phase (Alamutti, Läuger) (211) Hydrophilic 362 1-Fluoro-2,4-dinitrobenzene Involvement of hydrophobic and ----Influence of analogues of --- on the groups of phospholipids in membrane forkinetics of irreversible inhibition of sugar mation (Chuang et al.) (211) 599 Hydrophobic transport in the human erythrocyte (Shim-Involvement of ----- and hydrophilic min, Stein) (211) 308 groups of phospholipids in membrane Fructose influx ---- across the brush border of rabbit formation (Chuang et al.) (211) 599 ileum (Schultz, Strecker) (211) 586 5-Hydroxytryptamine Mechanisms of biogenic amine transport and Galactose transport system Dissociation of a ---- by warm-water storage. IV. Relationship between K+ and treatment (Rogers) (211) 255 the Na+ requirement for transport and storage of --- and norepinephrine in β -Galactosides Transport of --- across the membrane synaptosomes (Bogdanski et al.) (211) 521 of permeaseless Escherichia coli ML 35 cells Hyperosmolarity Stimulating effect of ---- on glucose after treatment with cetyltrimethylammonium (Ulitzur) (211) 533 transport in adipocytes and muscle cells Gas chromatographic determination (Clausen et al.) (211) 233 - - of the configuration of alanine and Immunoelectrophoresis serine in staphylococcal cell walls (Gil-Av Identification of water-insoluble membrane proteins by ---- in a solubilizing ureaet al.) (211) 101 Triton solvent (Demus, Mehl) (211) 148 Glucagon Hormone action at the membrane level. Asymmetry of the yeast cell membrane II. The binding of epinephrine and —— to the rat liver plasma membrane (Tomasi with respect to --- and efflux of dimethylsulphoxide (De Bruijne, Van et al.) (211) 31 Glucose transport Steveninck) (211) 555 Stimulating effect of hyperosmolarity on Influx Fructose ---- across the brush border of ——— in adipocytes and muscle cells rabbit ileum (Schultz, Strecker) (211) 586 (Clausen et al.) (211) 233 Glucose-6-phosphate Infrared spectroscopy Studies on plasma membranes. XI. Inor-- of Micrococcus lysodeikticus memganic pyrophosphatase, PPi-glucose phosbranes and membrane fractions (Green, Salton) (211) 139 photransferase and ---- in plasma membranes and microsomes isolated from Infrared spectroscopic rat and mouse livers and hepatomas measurements of phosphatidyl (Emmelot, Bos) (211) 169 ethanolamine-water liquid crystals (Bulkin, Glycerol Krishnamachari) (211) 592 Relative permeability of lysosomes from Intestine Tetrahymena pyriformis to carbohydrates, Transport of 5-thio-p-glucose in hamster

lactate and the cryoprotective nonelectro-

small --- (Critchley et al.) (211) 244

Intestinal fluid transport Studies on ———. I. Estimation of the extracellular space of everted sacs of rat small intestine (Jackson et al.) (211) 425 Intestinal fluid transport Studies on ——. II. The location of fluid accumulated in the wall of rat jejunum during incubation in vitro (Jackson, Cassidy) (211) 436 Ion distribution Effect of pH on sugar transport and ———————————————————————————————————	Magnesium-dependent, (Na+ + K+)-stimulated ATPase ————————————————————————————————————
the bilayers (De Gier et al.) (211) 373 Lysolecithin-water phases Structure of ———————————————————————————————————	(211) 458 Membrane Measurement of the permeability coefficient of ²² Na ⁺ through a synthetic phospholipid-protein———(Castleden, Fleming) (211) 478

Membranes Micrococcus lysodeikticus membranes Nonequilibrium-facilitated diffusion Infrared spectroscopy of ——— and memoxygen through ---- of aqueous cobaltobrane fractions (Green, Salton) (211) 139 dihistidine (Bassett, Schultz) (211) 194 Microsomes Membrane Studies on plasma membranes. XI. Inor-Permeability of the mitochondrial inner ganic pyrophosphatase, PPi-glucose phosphotransferase and glucose-6-phosphate in ———— to sucrose (Gamble, Jr., Garlid) (211) 223 plasma membranes and ---- isolated Membranes from rat and mouse livers and hepatomas. Phospholipid model ---: Antagonistic (Emmelot, Bos) (211) 169 effects of Ca2+ and local anaesthetics on the Microsomal fraction permeability of phosphatidylserine vesicles p-Nitrophenylphosphatase activity in the --- of turtle bladder mucosal cells (Papahadjopoulos) (211) 467 Membrane (Shamoo et al.) (211) 565 Small angle X-ray diffraction of myelin Microsomal membrane -: Lack of effect of deuterium oxide Glycoproteins of mouse liver smooth on myelin (Akers, Parsons) (211) 95 plasma and - - - fractions (Evans) (211) Membrane 578 Small molecule lipid- -- - interactions Mitochondrial and the puncturing theory of olfaction Permeability of the ——— inner membrane (Cherry et al.) (211) 409 to sucrose (Gamble, Jr., Garlid (211) 223 Membranes Mitochondrial membranes Studies on plasma membranes. XI. Inorg-Molecular weight of the major protein comanic pyrophosphatase, PPi-glucose phosponent from ———— (Curtis) (211) 575 photransferase and glucose-6-phosphate in Model membranes plasma --- and microsomes isolated Phospholipid ———: III. Antagonistic effects of Ca2+ and local anaesthetics on the from rat and mouse livers and hepatomas (Emmelot, Bos) (211) 169 permeability of phosphatidylserine vesicles Membranes (Papahadjopoulos) (211) 467 Studies on plasma membranes. XII. Frac-Molecular weight tionation of the ATPase of deoxycholate---- of the major protein component solubilized rat liver and hepatoma plasma from mitochondrial membranes (Curtis) membranes and the morphological appear-(211) 575 ance of the preparations (Emmelot et al.) Monolayers (211)43Effect of KMnO₄ on lecithin and cholesterol Membrane - - (Shah) (211) 358 Transport of β -galactosides across the Monolayers membrane of permeaseless Escherichia coli Epithelial ——: A study object for cell ML35 cells after treatment with cetyltricommunication (Siegenbeek van Heulelom methylammonium bromide (Ulitzur) (211) et al.) (211) 98 Mucosal 533 Membrane formation Comparison of rates elution of ²⁴Na⁺ from Involvement of hydrophobic and hydrothe ---- and serosal sides of the toad philic groups of phospholipids in --bladder (Drane, Vanatta) (211) 56 (Chuang et al.) (211) 599 Myelin Small angle X-ray diffraction of myelin Membrane phospholipid Anion permeability of mammalian red blood membrane: Lack of effect of deuterium oxide on ---- (Akers, Parsons) (211) 95 cells: Possible relation to ——— patterns (Deuticke, Gruber) (211) 369 p-Nitrophenyl phosphatase activity Membrane proteins - in the microsomal fraction of Erythrocyte ——— their study using turtle bladder mucosal cells (Shamoo et al.) aqueous pyridine solutions (Blumenfeld et O-Nitrophenyl-D- β -pyranoside-galactoside al.) (211) 109 Membrane proteins Cation repair of toluene-treated Escherichia. Identification of water-insoluble coli ML35 cells and the transport of ---immunoelectrophoresis in a solubilizing across the repaired membrane (Ulitzur) urea-Triton solvent (Demus, Mehl) (211) 148 (211) 542 Membrane protein component Norepinephrine Isolation and characterization of a — Mechanisms of biogenic amine transport from rat liver endoplasmic reticulum and storage. IV. Relationship between K+ (Kaplan) (211) 396 and the Na+ requirement for the transport

and storage of 5-hydroxytryptamine and

(211)

- in synaptosomes (Bogdanski et al.)

Membrane systems

nathan, Seshadri) (211) 1

Reaction rate profiles in ——— (Viadhya-

Nucleotide phosphohydrolase Activity of chick embryo fibroblasts (Perdue) (211) 184	port by murine leukemia cells (Kessel, Hall) (211) 88 Phosphate-binding protein
Olfaction Small molecule lipid-membrane interactions and the puncturing theory of (Cherry et al.) (211) 409	Rosenberg) (211) 158 Phosphatidyl ethanolamine-water liquid crystals
Optical diffraction analysis Structure of lysolecithin-water phases (negative staining and ———— of the electron	Infrared spectroscopic measurements of ———— (Bulkin, Krishnamachari) (211) 592
micrographs) (Junger et al.) (211) 381 Osmotically Amino acid permeability of pea chloroplasts as measured by ———————————————————————————————————	Phosphatidylserine vesicles Phospholipid model membranes: Antagonistic effects of Ca ²⁺ and local anaesthetics on the permeability of
tion coefficients (Nobel, Wang) (211) 79 Ouabain Sensitivities of (Na+ - K+)-ATPase and	(Papahadjopoulos) (211) 467 Phospholipids Involvement of hydrophobic and hydro-
Na ⁺ extrusion mechanisms to ——— and ethacrynic acid in the cortex of the guinea pig kidney (Proverbio et al.) (211) 327	phylic groups of —————————in membrane formation (Chuang et al.) (211) 599 Phospholipid model membranes
Nonequilibrium-facilitated diffusion of through membranes of aqueous cobaltodihistidine (Bassett, Schultz) (211)	and local anaesthetics on the permeability of phosphatidylserine vesicles (Papahadjopoulos) (211) 467
Permeability Amino acid ——— of pea chloroplasts as	Phospholipid-protein membrane Measurement of the permeability coefficient of ²² Na ⁺ through a synthetic ———
measured by osmotically determined reflec- tion coefficients (Nobel, Wang) (211) 79 Permeability	(Castleden, Fleming) (211) 478 Plasma membrane Glycoproteins of mouse liver smooth microsomal and ——————————————fractions (Evans)
Effect of anaesthetics (chlorpromazine, ethanol) on erythrocyte ————————————————————————————————————	(211) 578 Plasma membranes Studies on ———. XI. Inorganic pyrophos-
Inhibition of water and solute ————————————————————————————————————	phatase, PP _i -glucose phosphotransferase and glucose-6-phosphate in plasma mem- branes and microsomes isolated from rat and mouse livers and hepatomas (Emmelot,
brane to sucrose (Gamble, Jr., Garlid) (211)	Bos) (211) 169 Plasma membranes
Permeability Phospholipid model membranes: Antagonistic effects of Ca ²⁺ and local anaesthetics on the permeability of phosphatidylserine vesicles (Papahadjopoulos) (211) 467	Studies on ———. XII. Fractionation of the ATPase of deoxycholate-solubilized rat liver and hepatoma plasma membranes and the morphological appearance of the prepa- rations (Emmelot et al.) (211) 43
Permeability Relative ——— of lysosomes from Tetrahymena pyriformis to carbohydrates, lactate and the cryoprotective nonelectrolytes	Polymerization Solubilization of the factor required for —— of flagellin into P-filament (Kagawa) (211) 417
glycerol and dimethyl sulphoxide (Lee) (211) 550 Permeability coefficient Measurement of the ——— of ²² Na ⁺ through	Potassium transport Net ————————————————————————————————————
a synthetic phopholipid-protein membrane (Castleden, Fleming) (211) 478 Permeation	Studies on plasma membranes. XI. Inorganic pyrophosphatase,—— and glucose-6-phosphate in plasma membranes and
Valinomycin-induced ——— of **6Rb+* of liposomes with varying composition through the bilayers (De Gier et al.) (211) 373 Permeative properties	microsomes isolated from rat and mouse livers and hepatomas (Emmelot, Bos) (211) 169 L-Proline
Ionic — of lipid bilayer membranes (Simons, Taloni) (211) 448 Persantin	Amino acid transport by isolated mamma- lian renal tubules. III. Binding of ———————————————————————————————————
Effects of ——— on deoxycytidine trans-	Rosenberg) (211) 318

Proteins Erythrocyte membrane ————————————————————————————————————	Sodium transport Temperature dependence of — - in the isolated toad bladder (Porter) (211) 487 Soluto permeability
Proteins Identification of water-insoluble membrane by immunoelectrophoresis in a	Solute permeability Inhibition of water and ———————————————————————————————————
solubilizing urca—Triton solvent (Demus, Mehl) (211) 148	Influence of pH and temperature on the limited rotational freedom of the
Protein Phosphate-binding ——— of Escherichia coli (Medveczky, Rosenberg) (211) 158	and lipid hydrocarbon chains of natural membranes (Cerbon) (211) 389 Subcellular distribution
Protein component Isolation and characterization of a membrane ————————————————————————————————————	cerebral cortex (Seijo et al.) (211) 595 Sugar carrier
reticulum (Kaplan) (211) 396 Pyridine solutions Erythrocyte membrane proteins — their	Studies on the in skeletal muscle (Ilse, Ong) (211) 602 Sugar transport
study using aqueous ——— (Blumenfeld et al.) (211) 109 Pyrophosphatase	Effect of pH on ———————————————————————————————————
Studies on plasma membranes. XI. Inorganic ————, PP _i -glucose phosphotransferase and glucose-6-phosphate in plasma	Sugar Transport Influence of analogues of 1-fluoro-2,4- dinitrobenzene on the kinetics of irrever-
membranes and microsomes isolated from rat and mouse livers and hepatomas (Emmelot, Bos) (211) 169	sible inhibition of in the human erythrocyte (Shimmin, Stein) (211) 308 Sugar transport
Reaction rate profiles ———————————————————————————————————	Model for ———————————————————————————————————
Amino acid permeability of pea chloroplasts as measured by osmotically determined	Specifity of the active ————————————————————————————————————
(Nobel, Wang) (211) 79 Retinal outer segment fragments Lipid composition of bovine	Subcellular distribution of ——————————————————————————————————
(Nielsen et al.) (211) 10 Rotational freedom Influence of pH and temperature on the	Transport of ———————————————————————————————————
limited ——— of the structured water and lipid hydrocarbon chains of natural membranes (Cerbón) (211) 389	Thin ———— separating two aqueous phases (Seufert et al.) (211) 356 Toluene-treated Escherichia coli
Rubidium-86 Valinomycin-induced permeation of of liposomes with varying compositions through the bilayers (De Gier et al.) (211)	Cation repair of ——— Ml ₃₅ cells and the transport of O-nitrophenyl-D-β-pyranoside-galactoside across the repaired membrane (Ulitzur) (211) 542
373 Skeletal muscle Studies on the sugar carrier in ——— (Ilse, Ong) (211) 602	Transport Active sugar — in renal cortex cells: The electrolyte requirement (Kleinzeller) (211) 277
Sodium ion extrusion mechanisms Sensitivities of (Na ⁺ - K ⁺)-ATPase and to ouabain and ethacrynic acid in the cortex of the guinea pig kidney (Prover- bio et al.) (211) 327	Transport Amino acid ——— by isolated mammalian renal tubules. III. Binding of L-proline by proximal tubule membranes (Hillman, Rosenberg) (211) 318
Sodium + potassium - ATPase Sensitivities of —— and Na ⁺ extrusion mechanisms to ouabain and ethacrynic acid in the cortex of the guinea pig kidney	Transport Amino acid — in Neurospora crassa. III. Acidic amino acid transport (Pall) (211) 513
(Proverbio et al.) (211) 327 Sodium + potassium - ATPase Solubilization of guinea pig kidney with Lubrol W and Triton X-100 (Banerjee et al.) (211) 345	Transport Cation repair of toluene-treated Escherichia coli ML35 cells and the ———— of O-nitro- phenyl-D-β-pyranoside-galactoside across the repaired membrane (Ulitzur) (211) 542

Transport Effect of bile salts on ———————————————————————————————————	kidney cortex cells (Kleinzeller) (211) 264 Transport Stimulating effect of hyperosmolarity on glucose — in adipocytes and muscle cells (Clausen et al.) (211) 233 Transport Studies on intestinal fluid — . II. The location of fluid accumulated in the wall of rat jejunum during incubation in vitro (Jackson, Cassidy) (211) 436 Transport Studies on intestinal fluid — . I. Estimation of the extracellular space of everted sacs of rat small intestine (Jackson et al.) (211) 425 Transport Temperature dependence of Na+ — in the isolated toad bladder (Porter) (211) 487 Transport — of 5-thio-D-glucose in hamster small intestine (Critchley et al.) (211) 244 Transport system Dissociation of a galactose — by warm-water treatment (Rogers) (211) 255 Valinomycin-induced permeation — of **GRb+* of liposomes with varying composition through the bilayers (De Gier et al.) (211) 373 Warm-water treatment Dissociation of a galactose transport system by — (Rogers) (211) 255 Water permeability Inhibition of solute and — in human red cells (Macey and Farmer) (211) 104 Water transport Ion and — in Limonium. VI. The
65 Transport Net potassium ——— in Neurospora.	Ion and in Limonium. VI. The induction of chloride pumping (Shachar-Hill, Hill) (211) 313
Properties of a transport mutant (Slayman) (211) 502 Transport Specificity of the active sugar ————————————————————————————————————	X-ray diffraction Small angle — of myelin membrane: Lack of effect of deuterium oxide on myelin (Akers, Parsons) (211) 95